沥青混合料碾压是沥青路面施工的***一个环节,也是最重要、最关键且问题最多的一个施工步骤。当前国内对沥青混合料碾压不够重视,开展的研究较少,***今没有一套完整、科学的压实理论和碾压工艺。由于国外发达国家数十年前已经完成了高速公路的建设,近期没有对传统的压实工艺进行修订,当时的压实机械性能、路面设计方法和施工技术水平等诸多方面与现在存在很大的差别,照搬国外当时的压实方法用于当前中国的路面施工显然不太科学。《公路沥青路面施工技术规范》(JTG F40-2004)(以下简称04版《规范》)中对热拌沥青混合料压实的规定也不是非常详细,需要根据具体情况进行补充和细化。
常规的沥青路面碾压技术存在碾压时间过长、碾压遍数不易控制、漏压严重、平整度差、施工质量不均匀等诸多弊端,需要科学的碾压技术和工艺解决当前沥青路面碾压施工存在的突出问题。同时,由于沥青混合料设计方法的改进,传统的马歇尔设计方法已被先进的GTM或旋转压实机(Superp***e)设计方法逐步取代,沥青混凝土路面的压实标准显著提高,常规的碾压技术已无法达到现在的施工技术要求。国内多个科研单位的调研发现,许多高速公路的早期***与压实不足有关,需要研究与新的沥青混合料设计方法配套的碾压施工技术。
鉴于上述原因,本文提出新的“组合式碾压”技术,采用新的压实工艺,对碾压机械进行优化组合,规范了碾压施工参数选择、压路机振幅和频率的选择、叠轮方式等,沥青路面碾压施工存在的问题。
压实不足
目前在国内高速公路沥青路面的施工中,压实不足是一个比较突出的问题,主要原因是片面追求平整度和表面构造深度。这些工程的共同点是,通车以后路面平整度迅速衰减,面层受行车荷载碾压变形明显。
压实度的控制标准不准确
高速公路沥青路面施工中的路面压实度可以采用实验室标准密度的97%、***理论密度的93%、试验段密度的99%来控制。
高速公路沥青路面施工中接受了压实标准较高的GTM沥青混合料设计方法和Superp***e方法,但实验室密度检测试件的制作采用了与配合比设计成型试件相同的方法,而这种方法存在下述问题。
(1)如果配合比设计和工地实验室都采用马歇尔方法成型试件,压实度按马歇尔标准密度控制是有问题的,因为事实证明马歇尔标准密度偏低。
(2)如果配合比设计采用GTM或Superp***e方法成型试件,实际施工中工地实验室大多没有这两种试验仪器,只能做马歇尔试验,就无法满足“实验室密度检测试件的制作采用与配合比设计成型试件相同的方法”的要求。
(3)由于国内面层石料变异很大,工地试验频率要求较高,使用GTM或Superp***e方法成型试件价格昂贵,施工单位承担不起。
此外,***理论密度由测量计算得到,误差很大;而试验段密度不可靠,无法判定试验效果是否达到***。
所以高速公路沥青路面施工中采用的现行压实度标准无法准确控制现场压实度。
碾压时间过长
传统的压实工艺是钢轮压路机与胶轮压路机单独碾压,会造成碾压时间过长,温度下降过大,不能保证在高温下完成复压。尤其是低温下施工,温度下降更快,无法保证施工质量。
碾压遍数不易控制
除主观原因外,从客观上讲,传统的碾压遍数控制起来确实困难,五六台压路机在600㎡左右的作业面来回穿梭,管理人员无法数清遍数。
平整度控制困难
在高温下胶轮压路机碾压轮迹太重,施工单位因担心平整度不达标,一般在复压的后期才使用胶轮压路机碾压。但这个时候,胶轮压路机碾压仍会留下较深的轮迹,而且路面温度已经很低,终压消除轮迹十分困难,最终不能保证足够的平整度。
施工质量无法保证
由于传统碾压方式存在低温碾压、漏压、温度离析严重、平整度低、局部压实度不足等问题,带来的后果就是路面质量低劣。
组合式碾压技术
组合式碾压技术是先利用胶轮压路机的揉搓作用使混合料中的集料重新分布,降低摩擦阻力,使混合料处于易压实状态;然后实行振压,使被压实材料间的摩阻力由初始的静摩擦状态逐渐转变为动摩擦状态,充分利用振动压路机正弦交变的压力将混合料压实。在胶轮的揉搓和振动压路机正弦交变压力的交替作用下,达到***的压实效果。
组合式碾压充分发挥了胶轮压路机的揉搓作用和线压力大的优势,其工艺原理与GTM和Superp***e的成型方式十分接近,室内试验与室外施工一致性高。
对于不同的沥青混合料采用不同的压路机组合,普通沥青混合料使用胶轮压路机与双钢轮振动压路机的组合;***A和OGFC混合料使用普通双钢轮振动压路机与高频